Japanese Beetle: History, biology, and control

Kevin Rice
University of Missouri
ricekev@missouri.edu

Invasive species

- Introduced range = higher populations
- Enemy free space
- Increased damage
- Arrivals-accelerating rates

Japanese beetle

- Native to Asia
- Discovered NJ-1916

Initial eradication effort?

- Scientist aware of potential problem
- \$5,000
- 1 cart sprayer
- 1 barrel sprayer
- 2 dusters
- Tons of arsenic
- No labor support
- Abandoned 2 years

Initial management

- Dreer Nursery
 - Oppose eradication
 - "\$5 worth of damage"
 - Quarantine 1920
- Bounty
 - 80 cents/quart of beetles
- Roadside inspections
 - Fines
 - Convictions

Chemical control

- Estimated pop size = ½ billion/square mile
- Burn fields with oil and fire
- Lead arsenate
 - 1,500 pounds/acre
 - Human sickness
 - Silent spring

Fig. 3. "60 bushels caught in one day in August in one orchard." (Caption and photo from Britton, 1928.)

Host plant species

- Grubs = grass roots
- Adults = 300+ plant species
 - Field crops
 - Fruits
 - Ornamentals
 - Weeds
 - Shrubs
 - Hardwoods

Lifecycle

Immune to cold winters

Japanese beetle in Missouri

- Continues westward expansion
- Populations lower in years following droughts
- Adults emerge June-July (feed ~45 days)
 - 1 generation per year
 - Larvae host plant can determine emergence date

Grape feeding damage

- Primarily feed on upper foliage
 - Skeletonize or consume entire leaf
 - Clumped distrabution
- July-sept

Management options

- Remove attractive non-crop host plants
- Preferred plants (including weeds)
 - Linden, Japanese/Norway maple, birch, pin oak, horse chestnut, rose, mountain ash, willow, elm, Rose of Sharon, Virginia creeper ornamental apple, plum, cherry
- Rarely attacked plants
 - Red/silver maple, tulip tree, magnolias, red mulberry, forsythia, privet, lilac, spruce, hydrangea, yew

Chemical applications?

- No established thresholds (beetles or defoliation)
- 30% mechanical defoliation
 - Bloom = reduced growth (nodes pruning wts)
 - Veraison = no effect
 - Damage at bloom made vines less tolerant of damage at veraison

Insecticides efficacy

- Foliar sprays
- Early July
- Assessment 1, 7, 14 days after treatment

Japanese beetle management

- DO NOT use bucket traps
- Aggregation pheromones
- Not point specific
- Spill over

Milky spore disease = variable results

Biological control-Tiphia vernalis

Design an attract-and-kill strategy for Japanese beetles

Insecticidal nets

Rapid mortality

Two component lure

Aggregation pheromone = kills males and females

Treatments

Field design

Methods

- June to October
- Sampled in rows
 - -2, 4, 6, 8, 20
- Weekly sampling
 - Defoliation 10 plants/row
 - 30 sweeps/row
 - Bee bowls (R1-R6)
- Quantify seed damage

Nets provide equal protection

Attract-and-kill reduced seed damage

Increased biodiversity

Nets reduce seed damage

- Insecticide applications kill target insect
 - Also kill parasitoid wasps
 - Greater late season stink bug populations
 - Reduced seed quality
- Insecticidal nets
 - Maintain parasitoid populations
 - Lower stink bug populations
 - Higher seed quality

Insecticidal nets

- Provide equivalent control/defoliation
 - Low populations
- Reduce seed damage from stink bugs

Current work

Analyze movement

- Protein marking
 - Milk
 - Egg
- Pollinator diversity

Plume capacity

Plume capacity in vineyards???

Spotted Lanternfly: a New Invasive

Danielle Kirkpatrick-Trece Inc. Heather Leach- PSU

SLF is an Invasive Species in the USA

SLF first detection Berks Co. Pa

Eggs deposited on flat surfaces

Adult hitchhikers

Spotted Lantern Fly Sparking California Concern

JUNE 17, 2019 FRUITS & VEGETABLES, INDUSTRY NEWS RELEASE, NUTS & GRAPES

Live, Adult Spotted Lanternfly Found in California

FEBRUARY 24, 2020 PEST UPDATE

Where is SLF likely to spread to?

How to Identify the Invasive SLF

PA Department of Agriculture

PA Department of Agriculture

PA Department of Agriculture

PA Department of Agriculture

- A. Egg masses
- B. Early nymph
- C. Late nymph
- D. Adult, wings closed
- E. Adult, wings open

Cryptic egg casing

Nymphal Stages of SLF

- Early stage nymphs (1st-3rd instars) have black bodies and legs with white spots
- Only a few centimeters long
- Strong jumpers; will jump when frightened
- Tend to feed on the new growth of a plant, such as stems and foliage

Nymphal Stages of SLF

- Late stage nymphs (4th instars) have bright red bodies with black stripes and white spots
- Last nymphal stage before becoming adults
- About ½ inch long
- Strong jumpers; will jump when frightened

Adult SLF

Adults are about 1" long

Adult SLF

- Early season (left) vs. late season (right) female SLF
- Females build up fat bodies towards end of summer to prepare for egg laying

Potential to Cause Economic Damage

Direct effects

Phloem feeders; reported to feed on over 65 species of plants Knowledge gaps in host range in the US

Projected to become a serious pest of timber, ornamental trees, tree fruit, stone fruit, grapes, hops and small fruit such as blueberries

Feeding could potentially shock trees and cause decline

SLF in vineyards

SLF pressure in vineyards

SLF pressure in vineyards

SLF damage to vineyards

Adult SLF Feeding on Grapevine Video: Erica Smyers, PSU

SLF on hardwood trees

Potential to Cause Economic Damage

- Indirect effects of feeding
 - Excrete large amounts of honeydew
 - Sooty mold on leaves/fruit
 - May exacerbate yellow
 - jacket problems

Preliminary Trapping Study

- 2 sites Winchester, VA (lower population) and Reading, PA (higher population density)
- 3 trap types, baited and unbaited
- Traps checked weekly and captures recorded
- Sticky bands and lures replaced weekly

Adult Captures

Nymph Captures – Reading, PA

Sticky band traps: effective for capturing nymphs and adults throughout season

Non-target captures of vertebrates and invertebrates creates a potential problem with using sticky bands

Environmental DNA

eDNA for Biosurveillance

- Highly sensitive/specific
 - 7x more likely to detect SLF
 - Follow with traps/visual scouting
- Collect from entire vineyard!

SLF insecticide trials

Most commonly used

Trade Name	Active Ingredient	Control Method	PHI (days)	REI (hours)	Labeled for SLF on Grape in PA?	Life Stage Tested	Longevity	SLF Activity
Brigade 10WSB	bifenthrin	C, I	30	12	Yes, 2(ee)	Nymphs, adults	***	++++
Actara 25WDG	thiamethoxam	S, C, I	5	12	Yes, 2(ee)	Nymphs, adults	***	++++
Scorpion 35SL	dinotefuran	S, C, I	1	12	Yes, 2(ee)	Nymphs, adults	***	++++
Carbaryl 4L	carbaryl	C, I	7	12	No Note: Sevin XLR has 2(ee)	Nymphs, adults	***	++++
Danitol 2.4EC	fenpropathrin	C, I	21	24	No	Nymphs	**	++++
Malathion 8F	malathion	C, I	3	12	Yes, 2(ee)	Nymphs, adults	**	++++
Mustang Maxx 0.8EC	zeta-cypermethrin	C, I	1	12	Yes, 2(ee)	Nymphs, adults	**	+++
Avaunt 30DG	indoxacarb	C, I	7	12	Yes, 2(ee)	Nymphs, adults	*	++
lmidan 70WP	phosmet	C, I	14	336	Yes, 2(ee)	Nymphs, adults	*	++ for nymphs; 0 for adults
Assail 30SG	acetamiprid	S, C, I	3	48	Yes, 2(ee) on nymphs only	Nymphs, adults	*	+
JMS Stylet Oil	Paraffinic oil	С	14	4	No	Egg masses	Unknown	++
Lorsban Advanced	chlorpyrifos	С	35	24	No	Egg masses	Unknown	++++

SLF insecticide trials

Natural predators killing SLF

Generalist predators are attacking SLF in the U.S.

This is unlikely to control the SLF population

Fungal pathogens killing SLF

Two fungal pathogens in PA found attacking SLF

One identified as **Beauveria sp.**, the other as **Batkoa major**

Too early to determine species or use as a control method

Searching for natural enemies

FOREIGN EXPLORATION

Two parasitoid species found: *Anastatus orientalis* and *Dryinus stantoni*

Both are currently in U.S. quarantine facility

How to prepare for SLF

Scout for tree-of-heaven on your property

Monitor your wood edge for spotted lanternfly

If you think you find a spotted lanternfly, kill it, take a picture, and report it to:

Your department of agriculture

SLF invaded Korea-2004

- Severe economic damage
- Recent rapid decline in pop.
- Anastatus orientalis?
 - Non-targets in USA
- Additional BC agents?

Questions?

