Detection of Grapevine Viral Diseases Using Proximal Remote Sensing

Canh Nguyen^a, Vasit Sagan^a, Matthew Maimaitiyiming^b, James Schoelz^b, Misha T. Kwasniewski^b

^aDepartment of Earth and Atmospheric Sciences, Saint Louis University, St. Louis, MO 63108

^bDivision of Food Sciences, University of Missouri, Columbia, MO 65211

Introduction

- Disease-induced losses were estimated at \$24 billion and \$56 billion for soybean and corn respectively in the US between 2012 and 2016 (Crop Protection Network)
- Disease diagnostic at early stage is necessary for early intervention
- Plant pathogen detection by visual estimation by human raters, microscopic evaluation, or molecular technology
- Limitations: complex system, time consuming, and centralized laboratories

Remote Sensing

- Imaging techniques are reliable, cost effective, and nondestructive methods.
- Spectral sensors such as RGB, multispectral, hyperspectral, chlorophyll fluorescence, 3D Scanning.
- Hyperspectral imagery's advantages over others: hundreds of narrow and contiguous spectral bands
- Varying applications of hyperspectral: discovering salt stress, heavy metal, and explosives contamination in vegetation.

Why Remote Sensing?

Table 1. Summary of studies of plant pathosystems and plant diseases using hyperspectral sensors

Crop	Disease / Pathogen	Reference
Barley	Net blotch (<i>Pyrenophora teres</i>), Brown rust (<i>Puccinia hordei</i>), Powdery mildew (<i>Blumeria graminis hordei</i>)	(Kuska et al. 2015; Wahabzada et al. 2015)
Wheat	Head blight (Fusarium graminearum), Yellow rust (Puccinia striiformis f. sp. tritici)	(Bauriegel et al. 2011; Bravo et al. 2003; Huang et al. 2007; Moshou et al. 2004)
Sugar beet	Cercospora leaf spot (<i>C. beticola</i>), Sugar beet rust (<i>U. betae</i>), Powdery mildew (<i>Erysiphe betae</i>), Root rot (<i>Rhizoctonia solani</i>), Rhizomania (<i>Beet necrotic yellow vein virus</i>)	(Bergstrasser et al. 2015; Hillnhutter et al. 2011; Mahlein et al. 2013; Mahlein et al. 2010; Mahlein et al. 2012b; Rumpf et al. 2010; Steddom et al. 2005; Steddom et al. 2003)
Tomato	Late blight (<i>Phytophthora infestans</i>)	(Wang et al. 2008)
Apple	Apple scab (V. inaequalis)	(Delalieux et al. 2007)
Tulip	Tulip breaking virus (TBV)	(Polder et al. 2014)
Sugar cane	Orange rust (<i>Puccinia kuehnii</i>)	(Apan et al. 2004)

Study Objectives

- Using hyperspectral images at proximal sensing scale to detect red blotch and grapevine vein-clearing viruses in grapevine.
- Why proximal?

spatial resolution of images was strongly influential on the disease detecting performance.

e.g., Soil-borne pathogens can be sensed by airborne imagery (Hillnhutter et al. 2011), single symptoms optimally detected proximal sensor platforms (West et al. 2003).

Grapevine red blotch Virus (GRBV)

Figure 1. Symptoms of GRBV in *Pinot noir* (left) (Courtesy R.R. Martin, USDA-ARS). Symptoms of Magnesium deficiency (right) (Courtesy R.P. Schreiner, USDA-ARS)

- Virus randomly creates blotches of red pigment, veins can remain green.
- Easily confused with leafroll viruses when leaves cup or roll, and those of abiotic stress (i.e., magnesium deficiency) or drought
- Polymerase chain reaction (PCR)-molecular test-is the only method and relatively expensive.

Grapevine Vein Clearing Virus (GVCV) SAINT LOUIS

Figure 2. Translucent vein clearing on shoots (a), zig-zag internodes on shoots (b), and less dense canopy vine (c). Courtesy Wenping Qiu, Missouri State University

- First DNA virus found in grapevine (i.e., most grapevine viruses are RNA)
- Margins of new shoots become split and crinkled, Figure 2a.
- Veins look translucent in June and zig-zag internodes appear and become discernable in August, Figure 2b.
- Infected leaves misshaped and smaller, reducing vine size and less dense canopy, Figure 2c.
- Polymerase chain reaction (PCR)-molecular test-is the only method and relatively os/expensive.

Study Area and Data Collection

- An experiment at South Farm Research Center, Columbia, MO (38.92N, -92.28W).
- 2 grapevine groups: healthy and unhealthy/ infected, as other conditions were controlled.
- a hyperspectral sensor, SPECIM IQ (Oulu, Finland)

Table 2. Summary of Sample Size of Each Group and Each Date

· -		
Number of healthy vines	Number of unhealthy vines	Total
6	5	11
4	5	9
5	5	10
5	5	10
20	20	40
	Number of healthy vines 6 4 5 5 20	Number of healthy vines Number of unhealthy vines 6 5 4 5 5 5 5 5 5 5 20 20

- Wavelength: 397 nm to 1,004 nm with a resolution of 3nm
- Camera built-in functions to convert DN values to reflectance
- Region of Interests (ROIs) were extracted as pixel samples out of images of each vine.
- Spectral resolution: 203 bands

Methods

- Independent samples *t* tests for:
 - spectral reflectance of different growth stages
 - spectral reflectance of aggregated data
 - derivatives of spectral reflectance
- Vegetation indices
- Principal component analysis (PCA)

Results

Results

Table 4. Summary of estimates of vegetation disease indices

Vegetation Indices	Mean of Healthy Vines	Mean of Unhealthy Vines	<i>t</i> -statistic
Normalized Difference Vegetation Index (NDVI)	0.817	0.824	-0.765 ^{NS}
Red-edge NDVI	0.455	0.447	0.348^{NS}
Simple Ratio Index (SRI)	10.141	10.682	-0.980 ^{NS}
Chlorophyll Index (CI)	0.455	0.447	0.348^{NS}
Scaled photochemical reflectance index (sPR)	0.518	0.523	$-0.884~^{\rm NS}$
Normalized phaeophytinization index (NPQI)	-0.074	-0.078	0.269^{NS}
Structure independent pigment index (SIPI)	0.825	0.827	-0.177 ^{NS}
Leaf rust disease severity index (LRDSI)	11.524	11.774	-0.228 ^{NS}

Principal Component Analysis (PCA)

Conclusions

- Hyperspectral reflectance data and disease-centric indices were unable to discriminate two healthy and unhealthy grapevines.
- First and second derivatives of reflectance showed a significant difference at NIR region
- Plausible explanations:
 - Data proximally sensed at the incubation period of viruses.
 - Leaves were delayed to display symptoms.
 - Small sample sizes, only 20 samples on each vine group.

Q&A