A Metabolomics based Approach to Characterize Differences in Wine Volatiles Caused due to Rootstocks and Irrigation

Mani Awale
Show me Grape and Wine Symposium
March 3rd, 2020
Advisor: Dr. Misha Kwasniewski

Grafting in grapevines:

- The invasion of European grape industry by the soilborne aphid- like insect phylloxera (*Daktuloasphaira* vitifoliae Fitch)
- Rootstocks from North American species were grafted
- V. riparia, V.rupestris and V. berlandierii
- 80% of all vineyards grow grafted grapevines

Rootstocks can impact scion phenotypes

- Water and nutrients uptal
- Vine vigor and canopy configuration
- Fruit ripening
- □ Yield
- Berry composition

Rationale for this study:

- Hybrid grapes are mostly grown own-rooted (ungrafted)
- Besides tolerance to phylloxera, rootstocks confer many advantages including biotic and abiotic advantages
- The impact on hybrid wine volatiles due to rootstocks is not well explored
- How irrigation and rootstocks impact wine volatiles?

vitisroots

What are Aroma compounds:

- Low molecular weight compounds
- Contribute to the complexity of the wine flavor
- Floral, fruity, nutty, spicy or herbaceous aromas
- Aldehydes, alcohols, esters, hydrocarbons, ketones, furans and unidentified compounds
 - Grape-derived volatiles
 - Oak-derived compounds
 - Fermentation- derived compounds

How do we measure aromas?

Gas Chromatography Mass Spectrometry (GC-MS)

Untargeted metabolomics:

- Global profiling of the metabolome
- Extraction and detection of as many metabolites as possible
- Qualitative and relative quantification

Targeted metabolomics:

- Accurate quantifications of a select group of intended metabolites
- Time consuming

Metabolomics workflow:

NIST library

opyright ©2011 by the U.S. Secretary of Commerce on behalf of the United States of America

Scion: Chambourcin (a French

American grape)

Rootstock	Parentage	Characteristics
Own rooted Chambourcin	Vitis vinifera, V. cinerea	
3309C	V. riparia X V. rupestris	suitable for wetter environments
1103P	V. rupestris X V. berlandieri	suitable for drier environments, especially for the hot, Mediterranean climate
SO4	V. riparia X V. berlandieri	Tolerant to wet soil

3 irrigation treatments:

Full irrigation (Full)-100% ET Regulated Deficit irrigation (RDI)-50% ET No irrigation (None)-Rainfed

<u>Irrigation</u> iii 9 **Block**

= 4 replicate vines

288 vines total

i = Full water ii = Partial water

iii = No irrigation

Berry chemistry changes in different rootstocks:

Feature differences between rootstocks and irrigation treatments in wine 2017 using untargeted metabolomics approach:

PCA shows differences in metabolic features due to rootstock :

Rootstocks decreased some compounds in wine in 2017 and 2018:

Rootstocks decreased some compounds in wine in 2017 and 2018:

Rootstocks increased the levels of some compounds in wine in 2018:

Take home messages:

- Metabolomics based approach allowed for comprehensive and unbiased identification of compounds
- Grapes and wine aroma are significantly modulated by rootstocks
- We identified more than 90 different compounds in wine and quantified 22 compounds
- Some important aroma compounds are increased by rootstocks whereas some are lowered by rootstocks
- Understanding how rootstocks impact important aroma compounds will provide important information for breeders and winemakers to produce consumer preferred high quality hybrid wines

Acknowledgements

- Dr. Misha Kwasniewski
- Connie Liu
- Matt
- Atzin
- Alex
- Joe

Missouri Wine and Grape Board

Subtle Differentiation Metabolomics Workflow

